Kísérleti fizika

A fórum törzse, az érdeklődök kérdéseinek színhelye.

Re: Kísérleti fizika

HozzászólásSzerző: Zsolt68 » 2017.08.16. 19:30

G.Á írta:Nem tettél fel kérdést.
A kérdés a mozgóátlag inverz függvénye. (Szerintem nincs olyan.)

[Renderelés ... M(t)=\int_{t}^{t+l/v}dm_1(t)dt]
Amit mérnek, az a futószalagon lévő súly. Ebből kellene meghatározni, hogy éppen mennyi anyag megy bele.

G.Á írta:Mindenesetre a bemenetet gyakorlatilag sem lehet túl nagy probléma mérni, ha az időfüggés nem túlságosan változó.
Lapáttal dobálják rá, vagy talicskából öntik, nem lehet mérni a növekményt. Csak az össztömeget [Renderelés ... M(t)] ismerjük, és ebből kellene [Renderelés ... dm_1(t)]-t visszaszámolni.

Amikor bemegy [Renderelés ... dm_1], akkor hozzá kell adni [Renderelés ... dm_2 = k \cdot dm_1] mennyiségű segédanyagot, méghozzá igen pontosan. Aztán ezt [Renderelés ... l] hosszúságon keveri.

Sanyi_Laci írta:Hát, engem azért fizetnek a munkahelyemen, hogy lehetetlen dolgokat oldjak meg.
Na tessék. Szerintem ez eléggé lehetetlen feladat.
Zsolt68
 
Hozzászólások: 761
Csatlakozott: 2017.05.21. 20:50
Tartózkodási hely: Budapest
Has thanked: 379 times
Been thanked: 16 times
Név: Zsolt68

Re: Kísérleti fizika

HozzászólásSzerző: KovPityu » 2017.08.17. 07:08

Szerintem a folyamat indulásától mérni kell a mennyiséget (a szalagon lévő súlyt), majd a hiba felhalmozódása miatt időnként le kell üríteni és nullázni. Ez akár automatikus is lehet, ha a szalag súlya egy határérték alá csökken akkor üresnek tekinthető. Minden relatív súlynövekedés T mínusz akármennyi idejű töltést jelent, tehát a hozzákeverést csak simán késleltetni kell a futószalag sebességével arányosan. Legalábbis ahogy Móricka elképzeli. :D

These users thanked the author KovPityu for the post:
Zsolt68
Rating: 11.11%
 
KovPityu
 
Hozzászólások: 197
Csatlakozott: 2014.09.20. 06:52
Has thanked: 68 times
Been thanked: 17 times

Re: Kísérleti fizika

HozzászólásSzerző: Zsolt68 » 2017.08.17. 07:35

KovPityu írta:Szerintem a folyamat indulásától mérni kell a mennyiséget (a szalagon lévő súlyt)
Ez olyan, mint a sakk. Nyitány, játszma, végjáték. :evil:

Persze ha közben véletlenül lekapcsolják a gépet... (építkezésen minden előfordulhat, eltépik a kábelt vagy leáll az aggregátor).
Olyankor vagy elfelejti a szerkezet, és akkor a szalagon lévő selejtet adalékolás nélkül ki kell hordani (kidobni).
Vagy nemfelejtő memóriába tárolni a mért adatokat. Jól össze tud kuszálódni a memória, ha írás közben megy el a tápfesz. Meg kell győznöm az elektromos tervezőt, hogy megfelelő tartalék tápellátásról gondoskodjon, legalább a kikapcsolás előtti adatmentés idejére.

Ja meg a melós ráakasztja a pfufajkáját, uzsonnás táskáját.

Dőlésmérőt is kell tetetnem a készülékbe, mert ha az utánfutót nem vízszintes helyen parkolják le, akkor pontatlan lesz a súlymérés.

A folyamat közben a szalagon lévő anyag keveredik (valami csőbe megy be és átforgatják). Ez azt jelenti, hogy [Renderelés ... \Delta l] hosszon kicsit kiátlagolódhat az anyagmennyiség. Ez valószínűleg az építkezéshez használt anyagtól is függhet: a szemcsék méretétől és adhéziós tapadásától.
(De nekem attól fáj leginkább a fejem, hogy mindenre nekem kell gondolni, mert a főkonstruktőr túlságosan egyszerűnek képzeli a dolgokat.)

Bocsánat, az integrál képletét kapkodva írtam fel. A jövő nem szerepelhet benne. Asszem így helyesebb.
[Renderelés ... M(t)=\int_{t-l/v}^{t}dm_1(\tau)d\tau]

KovPityu írta:majd a hiba felhalmozódása miatt időnként le kell üríteni és nullázni. Ez akár automatikus is lehet, ha a szalag súlya egy határérték alá csökken akkor üresnek tekinthető.
Sajnos azt nem lehet megkövetelni (de még elvárni sem), hogy időnként üresben járassák.
Ilyen persze gyakran előfordulhat, de ezt külső tényezők határozzák meg. Például amikor keverékre van szükség, akkor elindítják, aztán járatják sokáig. Vagy ha elfogy az alapanyag, akkor (talán) le fogják állítani - vagy nem.
A készülék menüje sem lehet pilótavizsgás, betanított emberek fogják kezelni. A napi egyszerű rutin feladatokat meg tudják tanulni, de hogy a rendkívüli - ritkán előforduló - problémák esetén mit kell tenni, azt hamar elfelejtik. (Bizonyos helyeken rendszeres képzést kapnak a melósok a váratlan helyzetek kezelésére. Mert amit nem gyakorol naponta, azt hamar elfelejti. Mint én az integrál számítást.) Szóval a gép akkor jár, amikor a munkához szükséges. Nem akarnak matematikai kényszerekhez igazodni.
(Egy másik adagolónál már jártunk hasonló módon. Ott kézzel adagoltak, de géppel mérték. A gép diktálta a receptúrát, és az adag beöntése után kellett mérni a mennyiséget. Hát ezt nem mindig sikerült szinkronban csinálni, mert a keverő a csarnokban volt, a számítógép meg egy labirintus közepén. Még kiabálni sem tudtak egymásnak. Na a végén már azt akarták, hogy a mért bruttó tömegből lehessen megállapítani h mikor mennyi anyagot adagoltak. Ami egy érdekes feladat, csak az árba nem volt eredetileg bekalkulálva.)
Zsolt68
 
Hozzászólások: 761
Csatlakozott: 2017.05.21. 20:50
Tartózkodási hely: Budapest
Has thanked: 379 times
Been thanked: 16 times
Név: Zsolt68

Re: Kísérleti fizika

HozzászólásSzerző: KovPityu » 2017.08.17. 10:21

Nyilván attól függ hogy milyen pontosságot akarnak. Ha nincs adat, nincs miből kalkulálni. Vagy kalibrálnak időnként, vagy a selejtet kukázzák.
Maga a dolog nem tűnik azért vészesnek, nyilván kell a futószalag súly-idő függvénye és az adalékolás időfüggvénye a kalkulációhoz, ahol a mintavételezés adatait közvetlenül felhasználhatod akármilyen elcsúsztatással. Az üzembiztosság, kezelés meg alap PLC programozói feladat, csak fel kell készülnöd rá, hogy idővel egyre több és több feltételt kell majd beszúrnod az állapottábla végére. :mrgreen: Bár minden mindennel összefügg, szerintem kezd a dolog kissé eltávolodni a kozmológiától. :lol:

These users thanked the author KovPityu for the post:
Zsolt68
Rating: 11.11%
 
KovPityu
 
Hozzászólások: 197
Csatlakozott: 2014.09.20. 06:52
Has thanked: 68 times
Been thanked: 17 times

Re: Kísérleti fizika

HozzászólásSzerző: Zsolt68 » 2017.08.17. 11:45

KovPityu írta:Bár minden mindennel összefügg, szerintem kezd a dolog kissé eltávolodni a kozmológiától. :lol:
Khm.
Nem akarok senkit megsérteni, de amikor elvont dolgokról vitatkoztok, matematikai modellek alapján, mindig kételkedek egy kicsit.
Például hogy mekkora a gravitáció egy FLY közepén? Senki nem fogja tudni megmérni.
Nekem viszont időnként le kell mászni az elefántcsot-toronyból, és precízen igazolható hétköznapi dolgokkal kell foglalkoznom. Ahol egyértelműen kiderül, hogy úgy van, ahogy gondoltuk, vagy nem úgy van. (És nekem is meg kell küzdenem néhány nehéz felfogású emberrel. Sőt, nem tudom megbeszélni senkivel, aki egyáltalán felfogná a probléma komplexitását.)
Szóval tekintsük ezt egy példának, amikor az elméleti fizika és a matematikai modell közvetlenül kísérletileg ellenőrizhető (súlymérés).

KovPityu írta:Az üzembiztosság, kezelés meg alap PLC programozói feladat
Elvileg az lenne az én dolgom. Csak az, és semmi más. De ha nem figyelek oda mindenre, akkor nyakig ülünk a pácban (ez hosszú évek tapasztalata). A főkonstruktőr helyett lényegében én tervezem meg a rendszert, és még vitatkozni is kell vele, de a végén besöpri a dicsőséget.
KovPityu írta:vagy a selejtet kukázzák.
Sajnos ez nem így működik.
Ha a vevő elégedetlen a szerkezettel, akkor nem fizeti ki. Elköltünk rá egy csomó pénzt, aztán a nyakunkon marad a használhatatlan-eladhatatlan csodamasina.
KovPityu írta:csak fel kell készülnöd rá, hogy idővel egyre több és több feltételt kell majd beszúrnod az állapottábla végére.
Inkább kikészülni.
Mert az árképzés nem tartozik rám. Jó múltkor a főnökök lepacsiztak egy munkát 50e-ért. Nem tárgyalták végig rendesen. Úgy gondolták, hogy egy egyszerű feladat. Aztán kiderült, hogy a vevő sokkal bonyolultabban képzelte, és három hónapon keresztül újabb és újabb részfeladatokat talált ki. Folyamatosan, minden nap. Szinte soronként diktálta a követelményeket. De az ár az már nem változhat. (Ez már lassan jogi kategória. Vagy gondatlanságból elkövetett üzleti műhiba, vagy szándékos csalás. Persze a vevő védekezhet azzal, hogy nem ért hozzá, nem tudja felmérni h mennyi munka.)
KovPityu írta:Maga a dolog nem tűnik azért vészesnek, nyilván kell a futószalag súly-idő függvénye és az adalékolás időfüggvénye a kalkulációhoz, ahol a mintavételezés adatait közvetlenül felhasználhatod akármilyen elcsúsztatással.
Próbáltam szimulációt csinálni véletlenszámokkal. Végig kell ezt rendesen gondolni...
Tegyük fel, hogy az utolsó 4 mérés eredményét tároljuk (csak hogy kiférjen). Itt látható a rendszer időbeli fejlődése (ahogy egy fizikus mondaná). Egyelőre adalékolás nélkül...
[math]
Na ebből kellene kiokoskodni valamit. Az adat benne van, csak ki kell bányászni.
Ja ez itt az első és középső szakasz, az indítás és az üzem. A harmadik szakasz a leállás, amikor nem jön újabb anyag a bemenetre, csak kihordás történik, és akkor már adalékolni sem kell. Komplikálja a helyzetet, hogy ilyen bármikor előfordulhat. Nem fognak a menüben üzemmódot váltani, automatikusan fel kell ismerni h melyik szakaszban működünk.
A hozzászólást 1 alkalommal szerkesztették, utoljára Zsolt68 2017.08.17. 16:40-kor.
Zsolt68
 
Hozzászólások: 761
Csatlakozott: 2017.05.21. 20:50
Tartózkodási hely: Budapest
Has thanked: 379 times
Been thanked: 16 times
Név: Zsolt68

Re: Kísérleti fizika

HozzászólásSzerző: KovPityu » 2017.08.17. 12:54

KovPityu
 
Hozzászólások: 197
Csatlakozott: 2014.09.20. 06:52
Has thanked: 68 times
Been thanked: 17 times

Re: Kísérleti fizika

HozzászólásSzerző: G.Á » 2017.08.17. 15:19

Átlagolás műveletének az inverze valóban nem egyértelmű művelet, de szerintem itt most nem ilyesmire van szükséged.
Itt inkább a teljes súly differenciát kellene mérni, és késleltetve hozzáadni a megfelelő mennyiségű másik anyagot.

Viszont továbbra sem tudjuk hogy mi a cél, és milyen pontosság szükséges.
Utólagos számolásoknál hosszútávon talán jobb lenne ha a lapátolás egy irányítottan nyitható tartóba/rázószitába/valamibe menne, és már egyenletesen jutna a futószalagra.

These users thanked the author G.Á for the post:
Zsolt68
Rating: 11.11%
 
G.Á
 
Hozzászólások: 1216
Csatlakozott: 2016.12.25. 15:27
Has thanked: 58 times
Been thanked: 317 times

Kísérleti fizika

HozzászólásSzerző: Zsolt68 » 2021.06.17. 15:31

[Renderelés ... F = m \cdot a]
[Renderelés ... F = D \cdot x]
Utóbbi egyenletről tudjuk, hogy statikus mérés esetén igaz. De mennyire igaz ez a mozgó rúgó esetén?
Két szempontot kell mérlegelni...

Egyik végén rögzített rúgónak lendületből ütközzön neki pórázon lévő tömeg. A határfeltételt úgy adjuk meg, hogy a kötél rövidebb legyen a kezdeti sebességből számolható maximális kitérésnél. (A kötél rugalmasságát egyelőre elhanyagoljuk.)
Kérdés, hogy a rúgó alakváltozásának időfüggvényéből mennyire állapítható meg a korlátozatlan harmonikus mozgáshoz tartozó maximális erő.

Az egyik probléma, hogy a folyáshatár közelében az anyag viszokozitása lecsökken. Viszont a gyors alakváltozásnál a sebességfüggő folyamatokat is figyelembe kellene venni. Feltételezhetjük, hogy a mérés során a rúgót jelentősen túlterheltük. Mert nem azt az erőt kell alapul venni, ami a határfeltétel miatt korlátozott kitéréshez tartozna.

A másik probléma, hogy az erő egy része az elhanyagolhatónak vett tömegű rúgót gyorsítja. Mennyire befolyásolja ez a mérési eredményeket?
Képzeletben változtassuk meg a rúgó paramétereit. A rúgómerevség legyen kisebb, a sűrűség (egységnyi hosszra jutó tömeg) pedig nagyobb. Mit is kapunk?
Ez már egy elosztott paraméterű rendszer, amelyben mechanikai hullámok terjednek. Tehát ilyen esetben nem igaz, hogy az erő a kitérés és a rúgómerevség szorzatával egyenlő. Most térjünk vissza az eredeti rúgó módosítatlan paramétereihez. Meg kell állapítani, hogy ebben a rúgóban is terjednek mechanikai hullámok. Azonban ezt a mérnöki gyakorlatban többnyire elhanyagolják.

-----

- Hogyan állapítja meg a vegyészmérnök a kémcső törésmutatóját?
- Elejti.
Zsolt68
 
Hozzászólások: 761
Csatlakozott: 2017.05.21. 20:50
Tartózkodási hely: Budapest
Has thanked: 379 times
Been thanked: 16 times
Név: Zsolt68

Re: Kísérleti fizika

HozzászólásSzerző: G.Á » 2021.06.17. 22:58

Utóbbi egyenletről tudjuk, hogy statikus mérés esetén igaz. De mennyire igaz ez a mozgó rúgó esetén?

Ha elfogadható közelítésen belül teljesül a linearitás "statikus" esetben, akkor mozgó esetben is teljesül, figyelembe véve hogy a vonatkoztatási rendszertől független az eredmény. Természetesen egy valósi rugó nem egydimenziós, és mindenféle egyéb bonyodalmak felléphetnek. Az ilyen problémákkal részletesen foglalkoznak bizonyos mérnöki könyvekben.

Nemlineáris rugóknak hatalmas irodalma van, csak egyet kiválasztva: https://ntrs.nasa.gov/api/citations/19910016493/downloads/19910016493.pdf

These users thanked the author G.Á for the post:
Zsolt68
Rating: 11.11%
 
G.Á
 
Hozzászólások: 1216
Csatlakozott: 2016.12.25. 15:27
Has thanked: 58 times
Been thanked: 317 times

Előző

Vissza: Elméleti fizikai kérdések, problémák

Ki van itt

Jelenlévő fórumozók: nincs regisztrált felhasználó valamint 3 vendég

cron