A magfizikai héjmodellel kapcsolatban

A fórum törzse, az érdeklődök kérdéseinek színhelye.

A magfizikai héjmodellel kapcsolatban

HozzászólásSzerző: Voyager » 2015.05.15. 00:07

Van pár dolog, amit nem értek a mag energiájára felírt félempirikus összefüggésnél, ebben szeretnék segítséget kérni! A héjmodell alapfeltevése, ha jól tudom, hogy a nukleonok akárcsak az elektronok különböző energiaszintű héjjakon helyezkednek el és egymástól függetlenek. Ennek keretében amikor bővítjük a cseppmodellnél felírt félempirikus összefüggést a mag energiájára, akkor bejön egy új, negyedik tag az egyenletbe, ezzel van problémám, nevezetesen:
[Renderelés ... \varepsilon\frac{(N-Z)^2}{A}]
Itt arról van szó, hogy a Pauli-elv miatt a nukleonhéjakon maximum két azonos állapotú nukleon lehet, így ha N!=Z, akkor magasabb energiája lesz a magnak(?, ezt kérdezem is). Emiatt egy az (N-Z) kifejezéssel arányos tagot kell levonnunk az első három tagból, ami a fenti dolog lett. Ez így oké is lenne, de amiket nem értek:
- Miért [Renderelés ... (N-Z)^2] és miért nem [Renderelés ... (N-Z)]?
- [Renderelés ... A], mint tömegszám hogy került az összefüggésbe?
- Amit útközben is kérdeztem, pontosan mit is kompenzálunk ezzel a taggal?
Ha valaki tud segíteni, annak előre is nagyon köszönöm!

Egy kis szerkesztés:
Idő közben felcsaptam az atomfizika résznél egy könyvemet és utánanéztem a kvantumszámos dolgoknak. A Pauli-elv azt mondja ki, hogy egy atomon belüli adott kvantumállapotokat csak egy elektron tölthet be, tehát nem lehet egy atomon belül két azonos állapotú elektron. A kvantumállapotot pedig az n, l, m és s kvantumszámok határozzák meg. A főkavantumszám n, ő adja meg, hogy milyen energiájú pályán van az elektron n=1 az alapállapot, ezt nevezzük K héjnak. Az l mellékkvantumszám az l=0, 1, ..., n-1 értékeket veheti fel, ezért a K héj esetén az ő értéke 0. Az m mágneses momentum értéke m=-l, -l+1, ..., 0, ... l-1, l értékeket vehet fel, ezért m értéke is nulla ennél a héjnál, így egyedül a spinkvantumszám (s) marad hátra. Az elektron spinje +-1/2, így gyakorlatilag a legkisebb energiájú héjon az elektron két állapotot képes felvenni, ezt pedig a spin lehetséges értékei adják. Tehát a héjtól függ az, hogy hány elektron és ezzel együtt hány kvantumállapot lehetséges. Számszerűsítve:
[Renderelés ... \sum_{l=0}^{n-1}2\cdot(2 l+1)=2n^2]
Ez alapján a második héjon már 8 elektron lehetne, a harmadik héjon 18 és így tovább. Ezt azért írtam le, mert így már annyira sem világos az atommag héjmodellje, mint eddig. Ott valamiért minden héjon két nukleont gondolunk, miért? Egy jegyzetben ez a mondat szerepel: "Pauli-elv miatt egy energiaszinten legfeljebb két részecske lehet, ezért a protonok és a neutronok számának eltérése többletenergiát eredményez."
Mi az amit ennyire félreértelmeztem az atommag héjmodelljében?
Voyager
 
Hozzászólások: 22
Csatlakozott: 2014.06.24. 10:43
Has thanked: 1 time
Been thanked: 2 times

Re: A magfizikai héjmodellel kapcsolatban

HozzászólásSzerző: Voyager » 2015.06.16. 22:36

Csak a téma frissítésének céljából: Sajnos még mindig nem tisztázódott a kérdés, igazán örülnék, ha valaki el tudná magyarázni!
Voyager
 
Hozzászólások: 22
Csatlakozott: 2014.06.24. 10:43
Has thanked: 1 time
Been thanked: 2 times

Re: A magfizikai héjmodellel kapcsolatban

HozzászólásSzerző: szabiku » 2015.06.22. 21:02

Korábban belenéztem egy könyvembe, de csak hasonlóról volt szó benne (asszem a közbenső mag lehetőségeiről..) nem erről, de majd még előások pár könyvet, hátha találok valamit, akkor megírom.
Avatar
szabiku
 
Hozzászólások: 337
Csatlakozott: 2014.12.15. 18:38
Tartózkodási hely: Győr
Has thanked: 15 times
Been thanked: 6 times
Név: Kurdi Szabolcs

Re: A magfizikai héjmodellel kapcsolatban

HozzászólásSzerző: G.Á » 2021.02.02. 02:49

Voyager írta:[Renderelés ... \varepsilon\frac{(N-Z)^2}{A}]
Itt arról van szó, hogy a Pauli-elv miatt a nukleonhéjakon maximum két azonos állapotú nukleon lehet, így ha N!=Z, akkor magasabb energiája lesz a magnak(?, ezt kérdezem is). Emiatt egy az (N-Z) kifejezéssel arányos tagot kell levonnunk az első három tagból, ami a fenti dolog lett. Ez így oké is lenne, de amiket nem értek:
- Miért [Renderelés ... (N-Z)^2] és miért nem [Renderelés ... (N-Z)]?
- [Renderelés ... A], mint tömegszám hogy került az összefüggésbe?
- Amit útközben is kérdeztem, pontosan mit is kompenzálunk ezzel a taggal?
Ha valaki tud segíteni, annak előre is nagyon köszönöm!


Ez a tag valóban a nukleonok fermion-jellegéből eredő hatásokat kívánja közelítően figyelembevenni. Ugyanakkor fontos hangsúlyozni, hogy a félempirikus-formula/cseppmodell (amelyre a kérdés tulajdonképpen vonatkozik) nem egyezik meg a héjmodellel.
A másik két kérdés a formula alakjára vonatkozik, ezért csak a levezetés adhat megfelelő felvilágosítást.
Ennél a modellnél az atommagot protonból és neutronból álló fermion-golyónak tekintjük, a mozgási energiát pedig a Fermi-energiákkal fejezzük ki.
Általában statisztikus fizika kurzusokon szokás levezetni, hogy nem kölcsönható azonos N-darab fermion energiája nemrelativisztikusan és 3D-ben:
Kép
A protonokra és neutronokra vonatkozó Fermi-energiákat [Renderelés ... \epsilon_{F_p}] és [Renderelés ... \epsilon_{F_n}] -el jelölve a mag mozgási energiája:
Kép
Ezt átírhatjuk úgy, hogy csak a protonszámoktól és neutronszámoktól függjön:
Kép
és ennek a sorbafejtése az N-Z függvényében:
Kép

Természetesen a modell hiányossága, hogy a nukleonok nem egyszerűen dobozba vannak zárva, hanem egymással kölcsönhatásban vannak. A héjmodellben ezek is effektíven figyelembe vannak véve, de ez már a kérdés eredeti témáján kívül van.
G.Á
 
Hozzászólások: 1216
Csatlakozott: 2016.12.25. 15:27
Has thanked: 58 times
Been thanked: 317 times


Vissza: Elméleti fizikai kérdések, problémák

Ki van itt

Jelenlévő fórumozók: nincs regisztrált felhasználó valamint 4 vendég

cron